3.214 \(\int \frac{1}{\sqrt{\tan (c+d x)} \sqrt{a+i a \tan (c+d x)}} \, dx\)

Optimal. Leaf size=85 \[ \frac{\sqrt{\tan (c+d x)}}{d \sqrt{a+i a \tan (c+d x)}}+\frac{\left (\frac{1}{2}-\frac{i}{2}\right ) \tanh ^{-1}\left (\frac{(1+i) \sqrt{a} \sqrt{\tan (c+d x)}}{\sqrt{a+i a \tan (c+d x)}}\right )}{\sqrt{a} d} \]

[Out]

((1/2 - I/2)*ArcTanh[((1 + I)*Sqrt[a]*Sqrt[Tan[c + d*x]])/Sqrt[a + I*a*Tan[c + d*x]]])/(Sqrt[a]*d) + Sqrt[Tan[
c + d*x]]/(d*Sqrt[a + I*a*Tan[c + d*x]])

________________________________________________________________________________________

Rubi [A]  time = 0.200198, antiderivative size = 85, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 4, integrand size = 28, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.143, Rules used = {3548, 3546, 3544, 205} \[ \frac{\sqrt{\tan (c+d x)}}{d \sqrt{a+i a \tan (c+d x)}}+\frac{\left (\frac{1}{2}-\frac{i}{2}\right ) \tanh ^{-1}\left (\frac{(1+i) \sqrt{a} \sqrt{\tan (c+d x)}}{\sqrt{a+i a \tan (c+d x)}}\right )}{\sqrt{a} d} \]

Antiderivative was successfully verified.

[In]

Int[1/(Sqrt[Tan[c + d*x]]*Sqrt[a + I*a*Tan[c + d*x]]),x]

[Out]

((1/2 - I/2)*ArcTanh[((1 + I)*Sqrt[a]*Sqrt[Tan[c + d*x]])/Sqrt[a + I*a*Tan[c + d*x]]])/(Sqrt[a]*d) + Sqrt[Tan[
c + d*x]]/(d*Sqrt[a + I*a*Tan[c + d*x]])

Rule 3548

Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> -Si
mp[(d*(a + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^(n + 1))/(f*m*(c^2 + d^2)), x] + Dist[a/(a*c - b*d), Int[(a
+ b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, c, d, e, f, m, n}, x] && NeQ[b*c - a*
d, 0] && EqQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && EqQ[m + n + 1, 0] &&  !LtQ[m, -1]

Rule 3546

Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim
p[(a*(a + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^n)/(2*b*f*m), x] - Dist[(a*c - b*d)/(2*b^2), Int[(a + b*Tan[e
 + f*x])^(m + 1)*(c + d*Tan[e + f*x])^(n - 1), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] &&
EqQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && EqQ[m + n, 0] && LeQ[m, -2^(-1)]

Rule 3544

Int[Sqrt[(a_) + (b_.)*tan[(e_.) + (f_.)*(x_)]]/Sqrt[(c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[
(-2*a*b)/f, Subst[Int[1/(a*c - b*d - 2*a^2*x^2), x], x, Sqrt[c + d*Tan[e + f*x]]/Sqrt[a + b*Tan[e + f*x]]], x]
 /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0]

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rubi steps

\begin{align*} \int \frac{1}{\sqrt{\tan (c+d x)} \sqrt{a+i a \tan (c+d x)}} \, dx &=\frac{2 \sqrt{\tan (c+d x)}}{d \sqrt{a+i a \tan (c+d x)}}+i \int \frac{\sqrt{\tan (c+d x)}}{\sqrt{a+i a \tan (c+d x)}} \, dx\\ &=\frac{\sqrt{\tan (c+d x)}}{d \sqrt{a+i a \tan (c+d x)}}+\frac{\int \frac{\sqrt{a+i a \tan (c+d x)}}{\sqrt{\tan (c+d x)}} \, dx}{2 a}\\ &=\frac{\sqrt{\tan (c+d x)}}{d \sqrt{a+i a \tan (c+d x)}}-\frac{(i a) \operatorname{Subst}\left (\int \frac{1}{-i a-2 a^2 x^2} \, dx,x,\frac{\sqrt{\tan (c+d x)}}{\sqrt{a+i a \tan (c+d x)}}\right )}{d}\\ &=\frac{\left (\frac{1}{2}-\frac{i}{2}\right ) \tanh ^{-1}\left (\frac{(1+i) \sqrt{a} \sqrt{\tan (c+d x)}}{\sqrt{a+i a \tan (c+d x)}}\right )}{\sqrt{a} d}+\frac{\sqrt{\tan (c+d x)}}{d \sqrt{a+i a \tan (c+d x)}}\\ \end{align*}

Mathematica [A]  time = 1.46543, size = 140, normalized size = 1.65 \[ -\frac{i e^{-2 i (c+d x)} \sqrt{\frac{a e^{2 i (c+d x)}}{1+e^{2 i (c+d x)}}} \left (e^{2 i (c+d x)}+e^{i (c+d x)} \sqrt{-1+e^{2 i (c+d x)}} \tanh ^{-1}\left (\frac{e^{i (c+d x)}}{\sqrt{-1+e^{2 i (c+d x)}}}\right )-1\right )}{\sqrt{2} a d \sqrt{\tan (c+d x)}} \]

Antiderivative was successfully verified.

[In]

Integrate[1/(Sqrt[Tan[c + d*x]]*Sqrt[a + I*a*Tan[c + d*x]]),x]

[Out]

((-I)*Sqrt[(a*E^((2*I)*(c + d*x)))/(1 + E^((2*I)*(c + d*x)))]*(-1 + E^((2*I)*(c + d*x)) + E^(I*(c + d*x))*Sqrt
[-1 + E^((2*I)*(c + d*x))]*ArcTanh[E^(I*(c + d*x))/Sqrt[-1 + E^((2*I)*(c + d*x))]]))/(Sqrt[2]*a*d*E^((2*I)*(c
+ d*x))*Sqrt[Tan[c + d*x]])

________________________________________________________________________________________

Maple [B]  time = 0.066, size = 352, normalized size = 4.1 \begin{align*} -{\frac{1}{4\,ad \left ( -\tan \left ( dx+c \right ) +i \right ) ^{2}}\sqrt{a \left ( 1+i\tan \left ( dx+c \right ) \right ) }\sqrt{\tan \left ( dx+c \right ) } \left ( i\sqrt{2}\ln \left ( -{\frac{1}{\tan \left ( dx+c \right ) +i} \left ( -2\,\sqrt{2}\sqrt{-ia}\sqrt{a\tan \left ( dx+c \right ) \left ( 1+i\tan \left ( dx+c \right ) \right ) }+ia-3\,a\tan \left ( dx+c \right ) \right ) } \right ) \left ( \tan \left ( dx+c \right ) \right ) ^{2}a-i\sqrt{2}\ln \left ( -{\frac{1}{\tan \left ( dx+c \right ) +i} \left ( -2\,\sqrt{2}\sqrt{-ia}\sqrt{a\tan \left ( dx+c \right ) \left ( 1+i\tan \left ( dx+c \right ) \right ) }+ia-3\,a\tan \left ( dx+c \right ) \right ) } \right ) a+4\,i\sqrt{a\tan \left ( dx+c \right ) \left ( 1+i\tan \left ( dx+c \right ) \right ) }\sqrt{-ia}\tan \left ( dx+c \right ) +2\,\sqrt{2}\ln \left ( -{\frac{-2\,\sqrt{2}\sqrt{-ia}\sqrt{a\tan \left ( dx+c \right ) \left ( 1+i\tan \left ( dx+c \right ) \right ) }+ia-3\,a\tan \left ( dx+c \right ) }{\tan \left ( dx+c \right ) +i}} \right ) \tan \left ( dx+c \right ) a+4\,\sqrt{a\tan \left ( dx+c \right ) \left ( 1+i\tan \left ( dx+c \right ) \right ) }\sqrt{-ia} \right ){\frac{1}{\sqrt{a\tan \left ( dx+c \right ) \left ( 1+i\tan \left ( dx+c \right ) \right ) }}}{\frac{1}{\sqrt{-ia}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(a+I*a*tan(d*x+c))^(1/2)/tan(d*x+c)^(1/2),x)

[Out]

-1/4/d*(a*(1+I*tan(d*x+c)))^(1/2)*tan(d*x+c)^(1/2)*(I*2^(1/2)*ln(-(-2*2^(1/2)*(-I*a)^(1/2)*(a*tan(d*x+c)*(1+I*
tan(d*x+c)))^(1/2)+I*a-3*a*tan(d*x+c))/(tan(d*x+c)+I))*tan(d*x+c)^2*a-I*2^(1/2)*ln(-(-2*2^(1/2)*(-I*a)^(1/2)*(
a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)+I*a-3*a*tan(d*x+c))/(tan(d*x+c)+I))*a+4*I*(a*tan(d*x+c)*(1+I*tan(d*x+c)))
^(1/2)*(-I*a)^(1/2)*tan(d*x+c)+2*2^(1/2)*ln(-(-2*2^(1/2)*(-I*a)^(1/2)*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)+I*
a-3*a*tan(d*x+c))/(tan(d*x+c)+I))*tan(d*x+c)*a+4*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)*(-I*a)^(1/2))/a/(a*tan(
d*x+c)*(1+I*tan(d*x+c)))^(1/2)/(-tan(d*x+c)+I)^2/(-I*a)^(1/2)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\sqrt{i \, a \tan \left (d x + c\right ) + a} \sqrt{\tan \left (d x + c\right )}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+I*a*tan(d*x+c))^(1/2)/tan(d*x+c)^(1/2),x, algorithm="maxima")

[Out]

integrate(1/(sqrt(I*a*tan(d*x + c) + a)*sqrt(tan(d*x + c))), x)

________________________________________________________________________________________

Fricas [B]  time = 3.00064, size = 956, normalized size = 11.25 \begin{align*} \frac{{\left (a d \sqrt{-\frac{2 i}{a d^{2}}} e^{\left (2 i \, d x + 2 i \, c\right )} \log \left (\frac{1}{4} \,{\left (a d \sqrt{-\frac{2 i}{a d^{2}}} e^{\left (2 i \, d x + 2 i \, c\right )} + \sqrt{2} \sqrt{\frac{a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt{\frac{-i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}}{\left (e^{\left (2 i \, d x + 2 i \, c\right )} + 1\right )} e^{\left (i \, d x + i \, c\right )}\right )} e^{\left (-i \, d x - i \, c\right )}\right ) - a d \sqrt{-\frac{2 i}{a d^{2}}} e^{\left (2 i \, d x + 2 i \, c\right )} \log \left (-\frac{1}{4} \,{\left (a d \sqrt{-\frac{2 i}{a d^{2}}} e^{\left (2 i \, d x + 2 i \, c\right )} - \sqrt{2} \sqrt{\frac{a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt{\frac{-i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}}{\left (e^{\left (2 i \, d x + 2 i \, c\right )} + 1\right )} e^{\left (i \, d x + i \, c\right )}\right )} e^{\left (-i \, d x - i \, c\right )}\right ) + 2 \, \sqrt{2} \sqrt{\frac{a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt{\frac{-i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}}{\left (e^{\left (2 i \, d x + 2 i \, c\right )} + 1\right )} e^{\left (i \, d x + i \, c\right )}\right )} e^{\left (-2 i \, d x - 2 i \, c\right )}}{4 \, a d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+I*a*tan(d*x+c))^(1/2)/tan(d*x+c)^(1/2),x, algorithm="fricas")

[Out]

1/4*(a*d*sqrt(-2*I/(a*d^2))*e^(2*I*d*x + 2*I*c)*log(1/4*(a*d*sqrt(-2*I/(a*d^2))*e^(2*I*d*x + 2*I*c) + sqrt(2)*
sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((-I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) + 1))*(e^(2*I*d*x + 2
*I*c) + 1)*e^(I*d*x + I*c))*e^(-I*d*x - I*c)) - a*d*sqrt(-2*I/(a*d^2))*e^(2*I*d*x + 2*I*c)*log(-1/4*(a*d*sqrt(
-2*I/(a*d^2))*e^(2*I*d*x + 2*I*c) - sqrt(2)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((-I*e^(2*I*d*x + 2*I*c) + I
)/(e^(2*I*d*x + 2*I*c) + 1))*(e^(2*I*d*x + 2*I*c) + 1)*e^(I*d*x + I*c))*e^(-I*d*x - I*c)) + 2*sqrt(2)*sqrt(a/(
e^(2*I*d*x + 2*I*c) + 1))*sqrt((-I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) + 1))*(e^(2*I*d*x + 2*I*c) +
1)*e^(I*d*x + I*c))*e^(-2*I*d*x - 2*I*c)/(a*d)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\sqrt{a \left (i \tan{\left (c + d x \right )} + 1\right )} \sqrt{\tan{\left (c + d x \right )}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+I*a*tan(d*x+c))**(1/2)/tan(d*x+c)**(1/2),x)

[Out]

Integral(1/(sqrt(a*(I*tan(c + d*x) + 1))*sqrt(tan(c + d*x))), x)

________________________________________________________________________________________

Giac [A]  time = 1.26505, size = 120, normalized size = 1.41 \begin{align*} -\frac{2 \, \sqrt{-2 \,{\left (i \, a \tan \left (d x + c\right ) + a\right )} a + 2 \, a^{2}} a \log \left (\sqrt{i \, a \tan \left (d x + c\right ) + a}\right )}{-\left (i - 1\right ) \,{\left (i \, a \tan \left (d x + c\right ) + a\right )}^{3} + \left (3 i - 3\right ) \,{\left (i \, a \tan \left (d x + c\right ) + a\right )}^{2} a - \left (2 i - 2\right ) \,{\left (i \, a \tan \left (d x + c\right ) + a\right )} a^{2}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+I*a*tan(d*x+c))^(1/2)/tan(d*x+c)^(1/2),x, algorithm="giac")

[Out]

-2*sqrt(-2*(I*a*tan(d*x + c) + a)*a + 2*a^2)*a*log(sqrt(I*a*tan(d*x + c) + a))/(-(I - 1)*(I*a*tan(d*x + c) + a
)^3 + (3*I - 3)*(I*a*tan(d*x + c) + a)^2*a - (2*I - 2)*(I*a*tan(d*x + c) + a)*a^2)